Loading Now

群之可解性

目錄

Definition 2.7

首先讓我們定義quicklatex.com-fbbb7f15bc14ef6b8aa38af3fba7ccf6_l3 群之可解性為一個群,我們說quicklatex.com-fbbb7f15bc14ef6b8aa38af3fba7ccf6_l3 群之可解性是solvable/soluble(可解)的話代表存在filtration quicklatex.com-8654d22d4ef92632cfade548ca2e9120_l3 群之可解性使得說quicklatex.com-d988786fabdd622a53aba529e6fcf77b_l3 群之可解性是abelian的

照這個定義來看如果是要解多項式quicklatex.com-84593ca8a88981ee73aac37b5077a34c_l3 群之可解性的話就需要滿足求根式解

Proposition 2.8

如果quicklatex.com-fbbb7f15bc14ef6b8aa38af3fba7ccf6_l3 群之可解性是solvable的話,則quicklatex.com-fbbb7f15bc14ef6b8aa38af3fba7ccf6_l3 群之可解性的subgroups以及商數皆為solvable

證明

quicklatex.com-8654d22d4ef92632cfade548ca2e9120_l3 群之可解性使得quicklatex.com-d988786fabdd622a53aba529e6fcf77b_l3 群之可解性屬於abelian

quicklatex.com-f14340b2ffc65f4c431846548f6f8306_l3 群之可解性屬於subgroup

    quicklatex.com-f9dd67d81c8402afa9e14181e1afd197_l3 群之可解性

    quicklatex.com-cd398558fbe59259fbb5b1ed7c4c293d_l3 群之可解性

    quicklatex.com-c144d9777bb5ca7b6413b1498baa59a8_l3 群之可解性

假設quicklatex.com-7e7c616aa0cb5de52bdc40707710400e_l3 群之可解性,則quicklatex.com-ba9adb9372504092a748f94f089220ab_l3 群之可解性以及quicklatex.com-3b692b2ef9335babbba641bbbab760bd_l3 群之可解性

    quicklatex.com-d88fe2693807a58093564e899cabb954_l3 群之可解性

    quicklatex.com-24ad7bbe57e6a3c968f61a0778657549_l3 群之可解性

    quicklatex.com-d14959b2db3ca29a6e7360324aff48a0_l3 群之可解性

範例

(1)quicklatex.com-c4294bc36027a056d0d5db88db437325_l3 群之可解性屬於solvable.

證明:quicklatex.com-a0069600788370d87b0e96b8fa0895f8_l3 群之可解性

(2)quicklatex.com-5f4b6367a38f6e0e275c733421067426_l3 群之可解性屬於solvable

(3)quicklatex.com-5938279d3bc6e931e801a97479928fc7_l3 群之可解性屬於solvable

(4)如果quicklatex.com-df52061a393e5bbba5a373d9a8c678d2_l3 群之可解性quicklatex.com-82c44021a0cbed7056489418e6acbe2d_l3 群之可解性不屬於solvable,(quicklatex.com-5359bb64c67fa54a67be75d28c0c3ecb_l3 群之可解性,一般來說無法在求根式解解出)

證明:假設我們有一個filtration quicklatex.com-10705c35e340f788dfe5f9ca7de0e66e_l3 群之可解性使得quicklatex.com-d988786fabdd622a53aba529e6fcf77b_l3 群之可解性是abelian的,quicklatex.com-88f26ec10363d144fc84d63a59024a41_l3 群之可解性本身應該會包含在quicklatex.com-82c44021a0cbed7056489418e6acbe2d_l3 群之可解性上所有quicklatex.com-07c32326e2a7c347c1c49015f105ee79_l3 群之可解性的所有3-cycles組合,但在quicklatex.com-df52061a393e5bbba5a373d9a8c678d2_l3 群之可解性的時候會矛盾

(5)quicklatex.com-63e87fea1a8c502ab271701369d96b69_l3 群之可解性,意指Borel subgroup是solvable的,quicklatex.com-f43525acf772843565096cee033f9501_l3 群之可解性例如像是quicklatex.com-429b75916b09f93aff2cc933700cfb6c_l3 群之可解性:一組upper triangular matrices

證明:quicklatex.com-81ce72e130206e3ba3c4eb743c795f17_l3 群之可解性,其中quicklatex.com-d9b8845220716a1df62de4d416893834_l3 群之可解性,而quicklatex.com-015ccae55e174590c5e0cc193f74b0c7_l3 群之可解性

quicklatex.com-21a93b57ed116c3b66acfe1221c83656_l3 群之可解性 with kernel quicklatex.com-8da1f6274e977bf28ed1ced5d102b908_l3 群之可解性

quicklatex.com-56d5dcaa3bf7f1ff8e70da5d7d07089b_l3 群之可解性,其中quicklatex.com-618382783c37c90dabb0a7e146f5eeff_l3 群之可解性與kernel

    quicklatex.com-37673da96e0d0933eacd7a8c0f7ba88d_l3 群之可解性

    quicklatex.com-64d2c6954c5ef78545abf838c9ad261b_l3 群之可解性

Share this content:

I'm Scientia, currently a graduate student. My research interests include Cryptology, Cryptographic Engineering, Security and Privacy, Computational Complexity, Quantum Cryptography, Hardware Security, Cybersecurity and Anomaly Detection.

Post Comment