Loading Now

Square Multiply 演算法

此演算法主要是針對quicklatex.com-eb9462be1af5171b9038d7baf084ad09_l3 Square Multiply 演算法quicklatex.com-a9cc437a95710eb57df735204601059f_l3 Square Multiply 演算法很大而計算機通常算不太出來的時候使用的方法,一開始z設為1,並且把指數部分拆成二進位,從左至右運算,遇到quicklatex.com-c868738e74cbfecfafdc0ab7de2e3be4_l3 Square Multiply 演算法時計算quicklatex.com-6b3096ca70469e3a5fdf21df2181a8df_l3 Square Multiply 演算法的平方乘上底數再quicklatex.com-8e2740a4757d152f8e93ab8942690d07_l3 Square Multiply 演算法,而quicklatex.com-0290134bec8b0bafa19930100717eb29_l3 Square Multiply 演算法時計算quicklatex.com-6b3096ca70469e3a5fdf21df2181a8df_l3 Square Multiply 演算法的平方再quicklatex.com-8e2740a4757d152f8e93ab8942690d07_l3 Square Multiply 演算法即可。

舉例:quicklatex.com-0dc15391f0e7b780d0c968d11b4cbe29_l3 Square Multiply 演算法

b’s bitsoperationz
  1
1quicklatex.com-116977e371a26b5463114086850bc3e8_l3 Square Multiply 演算法325
0quicklatex.com-d057a71c7b1c971b3ec5d4c0be6033e1_l3 Square Multiply 演算法658
1quicklatex.com-116977e371a26b5463114086850bc3e8_l3 Square Multiply 演算法703
0quicklatex.com-d057a71c7b1c971b3ec5d4c0be6033e1_l3 Square Multiply 演算法190
0quicklatex.com-d057a71c7b1c971b3ec5d4c0be6033e1_l3 Square Multiply 演算法469

quicklatex.com-03911cc42d5fa46d26ac3fc258762a44_l3 Square Multiply 演算法

執行時間大概是quicklatex.com-4c555a3964eb97b72a057367ad61b716_l3 Square Multiply 演算法模運算。

Share this content:

I'm Scientia, currently a graduate student. My research interests include Cryptology, Cryptographic Engineering, Security and Privacy, Computational Complexity, Quantum Cryptography, Hardware Security, Cybersecurity and Anomaly Detection.

Post Comment